NONISOTHERMAL FLOW OF A MOLTEN POLYMER
ACCOMPANIED BY A FIRST-ORDER PHASE TRANSITION

N. I. Basov and I. I. Felipchuk UDC 532.135

A theoretical discussion is presented for the filling of 2 mold by a melt of crystailine
polymer; the theoretical relationships agree well with the experimental ones.

In pressure dye casting of polymers, the material is forced into the mold and sets there. The scope
for exact adoption of the mold shape is important, because it is obvious that the flow is very much non-
isothermal, and hence the filled length of the cavity remains finite,

One cannot use the relationships derived for nonisothermal flow on the assumption that the thermo-
physical properties are independent of temperature [1, 2] because thermoplastics such as polyolefins and
polyamides, which are typical crystalline polymers, do not behave in this way (Fig. 1). These materials
show a marked change in thermal diffusivity (Fig. 1b) over a nmarrow temperature range called the crystal-
lization region, which indicates that in this range there is a phase transition very similar in nature to a
first-order phase transition.

We therefore consider the flow of a molten crystalline polymer (Fig. 2) having an initial temperature
Ty and a pressure Pjat the inlet to the mold, whose wall temperature is Tyy; we then distinguish the region
of mobile liquid core, temperature T, (x, y, t), from the region of solidified material at the wall, tempera-
ture T, (%, y, t). The interface has coordinate y,, which is dependent on time, and has a characteristic tem-
perature T, for the crystallization region. In the casting of such polymers we have

(T* - TW) > (To - T*)-

We take as one-dimensional the flow in the cavity between two unbounded parallel plates having
a separation 2h, apart from a region at the inlet (region a) and at the flow front itself I () (region b), both
of which have lengths very small compared with those of the casting generally. This is a fairly crude mode
of calculation, but we shall see that it gives satisfactory quantitative agreement between theory and ex-
periment.

In fact, the thickness of the solidified layer varies along the length of the component.

The length of the cast component is comparatively great, so this scheme involves the assumption that
a section through the thickness presents in adjacent parts layer thicknesses that vary to a negligible extent.

The liquid core continues to move and the cast length continues to increase until the mobile inter-
faces meet (the condition yy = 0). If the polymer in the mold is incompressible,and the density is inde-
pendent of temperature, the equation of motion for the quasistationary state takes the form

dPjox = dty,x/dy . (N

We take the power law form for the equation describing the deformation of the liquid core:

dVidy = "y, x/n(T) for n>1, (2)

where the n(T) relationship takes the form

b
= 1), €X , 3
M = Mo €Xp (TO—T*) 3)
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Fig. 1. Temperature dependence of: a) thermal conductiv-
ity: b) thermal diffusivity for low-density polyethylene [3]:
1) true curve; 2) approximation used in solving thermal
problem (A, W/m-deg; o,m?/sec, t, °C).

and we substitute (2) info (1) and integrate twice with the following boundary conditions
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Then we have to derive y,{t, x) and T(y, x, t) from the energy equations for the region of solidified
polymer and the liquid core.

The following assumptions are made in solving the thermal part of the problem. The thermal dif-
fusivity o of the melt is equal to that of the solidified material and is independent of temperature (curve 2
of Fig. 1b}, and the crystallization region is localized at temperature Ty, where o (T) shows a discon-
tinuity, and there is an interface between the phases, which arises because there is a definite latent heat
of fusion r. We also assume that the thermal conductivity A of the melt is equal to that of the solidified
polymer,

We neglect dissipative heat production in the liquid core,

The temperature gradient in the x direction is much less than that in the y direction, since equal
finite temperature differences T, — T, are attained in the first case in lengths that are larger by 1-2 orders
of magnitude than those in the second, so we assume that

0Ty/0x =0. @)

A consequence of assumption (7) is that there is no convective heat transfer in a liquid core, and
hence that T,, T,, y,, and 8P/8x are independent of x; the latter in (6) may then be replaced by

(T* - TW) >> (To - T:}:)-

The differential equations for thermal conduction then take the following form:

2
T o P gcy<p ), ®)
ot ay?
2
My _ o OTa. o hycy<h ©)
ot ay?
with the following boundary and initial conditions:
W 5 =0, Tsly=nes =Tx> Trle=o =T, (10)
Y jy=0
Ty ly=t = T, Taly=putr = Ter Tole=o == To. (11)
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Fig. 2. Filling of a mold by a crystalline polymer.

Fig. 3. Mold filling length as a function of time for various temperatures; compo-
nent thickness 2 mm. Pressure at outlet to mold 600 kg/cm? ¢, mm; t, sec). Tem-~
peratures (C): a) 180; b) 190; ¢) 200; d) 210; e) 230; ) 250; 1) calculated curve; 2}
experiment. The Roman numerals are the numbers of the transducers placed along
the cavity (350 mm from inlet to end). The numbers on the curves are the specimen
lengths in mm.

The interface has coordinate y,(t), where the heat flux to the wall is equal to the sum of the flux pro-
duced by crystallization and the flux drawn from the liquid core, but the latter can be neglected by virtue
of the condition (T4 —Tw) > (T(~Tx); the final condition at the interface takes the form:

}»Q& — 7 d_yoﬂ(f) (12)

9 ly=goity dt
where A and p are the thermal conductivity and density of the polymer respectively.

The y, (t) relationship is determined by solution of (9) and (12) together; we introduce the new variable

S e (13)
2Vt
which hags the range of variation
0 [y:h <z < 2 {yzyo(l’) ’ (14)
whereupon (9) and (12) take the form
dT &*T,
9772 g 2 , 15
‘& & 15)
dT, 2rp
R =2, 16
dz j:—=y A ° 18

The solution to (15) subject to the boundary conditions corresponding to (11) takes the form

Ty— Tw _ 2] (= E) (17)
Te—Tw D@y @)
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where & is the error integral,

2/Va R
@(z):l—/—%_; Y exp(—%)dz. (18)

We get the following equation equation by substituting into (17) for dT,/dz at z = z, and substitution into
(16):

0

exp(—20) _ ap
Ve Tt
2,® (20/V ) AMTx—Tw)

(19)

from which we determine z,. Then in calculating z,, we use (13) to derive y, ().

The relationship T, (y,t) is determined by solving (8); we integrate the latter with respect to y from
0 to y, subject to 8Ty/8yly = ¢ = 0 and get

Yo
9
at ay Yo(2)
0
and the solution to (20) we seek in the form -
T,=T pl1--%
~T—p0 | 1- ). )
Then (21) satisfies the conditions
i) —0; Tilymsoto =T
(7y y=0
The condition Ty|{ .o = Tj is met only at y = 0 for
PO |=0=To—Ts, (22)
which is considered sufficient in solving the present problem.
We substitute (21) into (20) and integrate to get
909" + @y + 3agyy! =0
or
(9%) - 3052 (9yy) = 0. (23)
Integration of (23) gives
| Yt
QYo = C exp [—30& j —Q-J , (24)
. 74
where the constant of integration is defined from the condition y,(t)] t=0=h, see (13) and (22):
C=(To—Tu)h. (25)

Then finally we get for ¢(t) by substitution into (24) of values for y,(t) and T followed by integration:

_(1;+1 ) | 3 2V Tk ’
z oL V4 /
0 Jexp [— - —*—"-—“] : (26)

@) = (Ty— T )1 — 221 T /h) 28 " 1—2z) £/h
7
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Then Ty(y, t) is as follows on substituting (26) into (21):

T,—T, Va Rl )
LeTe [ % oy ™ exp [ — , 27
T,—T, [ e 1% p‘( —a (27)

where o = 2zyVt/h; n = 30/223.

We substitute for y,(t) and Ty(y, t) in (6) and replace the derivative 8P/ 6x by Py/I(t), and then in-
troduce the dimensionless variable y/y, = £ and integrate with respect to t to get

(n+1) s 22,V ¢ /h 1 A
L= 2T IO _{ (1— a)”ﬂdaj n*1 ey [——
S %, ; £ exp To—T,
exp v/l — )] (1— o+ ]
x -2 bl e . )

which enables us to follow the filling of the mold. If we substitute into the upper limit in the outer integral
in (28) the time corresponding to the end of the filling (condition y, = 0), which is deduced from (13), we
get the expression for the maximal cast length as

_ (1) Poh™E — )] b(1— o)y exp [xa (1 —a) ] 9
L= ez Ef Bl —a) exp[ T =T =8 dede . (29)

Equation (29) relates the maximum possible length of the casting to the rheological quantities n,, T,,
n, b and the thermophysical ones A, r, and a, as well as to the technological parameters Pyand T, and
the mold geometry h; it enables one to estimate the scope for making such components not only in designing
molds but also in determining technological working conditions for existing equipment.

Equations (28) and (29) have been checked by casting polypropylene of grade PP-2 under pressure.

The mold in the casting machine was a plate 20 x 350 mm of variable thicknesses: 1, 1.5, 2, and 4
mm. Detectors of strain-gauge type were placed at various points along the length of the mold to record
the instant when the front passed a given point (see [4] for the method of measuring the pressure and filling
time). The signals from the detectors were recorded by an oscilloscope during filling and thus gave I ()
for various values of Py, T;, and h. The final cast lengths L were measured to 1 mm. To derive I (t) and L
to correspond with experimental values we used (28) and (29) to determine T, by a thermomechanical meth-
od, while the thermophysical characteristics o and r were determined in the steady thermal state, and the
rheological constants n, 1, T,, and b were determined by capillary viscometry. The computations from
(28) and (29) were performed with a BESM-4 computer.

Figure 3 compares the calculated and observed [(t) and L, and the discrepancies in I(t) are
considerable (up to 25%) only during the initial stage of filling, which has little influence on the
discrepancy between the calculated and observed L (maximum cast length 350 mm), the error in the latter
case not exceeding 5%. '
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