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A theoret ical  discussion is presented for  the filling of a mold by a melt of crystal l ine 
polymer;  the theoret ical  relationships agree well with the experimental  ones. 

In 0 ressure  dye casting of polymers,  the mater ia l  is forced into the mold and sets there. The scope 
for exact adoption of the mold shape is important,  because it is obvious that the flow is very  much non- 
isothermal ,  and hence the filled length of the cavity remains  finite. 

One cannot use the relat ionships derived for nonisothermal flow on the assumption that the the rmo-  
physical proper t ies  are  independent of temperature  [1, 2] because thermoplast ics  such as polyolefins and 
polyamides, which are  typical crystal l ine polymers,  do not behave in this way (Fig. 1). These mater ia ls  
show a marked change in thermal  diffusivity (Fig. lb) over a narrow temperature  range called the c rys t a l -  
lization region, which indicates that in this range there is a phase transit ion very  s imilar  in nature to a 
f i r s t - o rde r  phase transition. 

We therefore  consider the flow of a molten crystal_line polymer (Fig. 2) having an initial tempera ture  
T O and a p ressure  P0 at the inlet to the mold, whose wall temperature  is TW; we then distinguish the region 
of m o n t e  liquid core,  tempera ture  T t (x, y, t), f rom the region of solidified mater ia l  at the walt, t empera -  
ture T 2(x, y, t). The interface has coordinate Y0, which is dependent on time, and has a charac ter i s t ic  t em-  
perature  T .  for the crysta l l izat ion region. In the casting of such polymers we have 

(T. - -  Tve) >> (To - -  T,). 

We take as one-dimensional  the flow in the cavity between two unbounded parallel  plates having 
a separat ion 2h, apar t  f rom a region at the inlet (region a) and at the flow front i tself /( t )  (region b), both 
of which have lengths ve ry  small  compared with those of the casting generally. This is a fair ly crude mode 
of calculation, but we shall see that it gives sa t i s fac tory  quantitative agreement  between theory and ex- 
periment. 

In fact, the thickness of the solidified layer var ies  along the length of the component. 

The length of the cast  component is comparat ively  great,  so this scheme involves the assumption that 
a section through the thickness presents in adjacent parts layer thicknesses that vary  to a negligible extent. 

The liquid core  continues to move and the east  length continues to increase  until the mobile in ter -  
faces meet  (the condition Y0 = 0). If the polymer in the mold is incompressible ,  and the density is inde- 
pendent of temperature ,  the equation of motion for the quasis tat ionary state takes the form 

OP/Ox = Ozy,x/Oy. (1) 

We take the power law form for  the equation describing the deformation of the liquid core:  

dV/dy = "cny,x/~l (T) for n > 1, (2) 

where the ~(T) relat ionship takes the fo rm 

~1 = ~10 exp (3) 
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Fig. 1. T e m p e r a t u r e  dependence of: a) t he rma l  conductiv- 
ity; b) ~hermaI diffusivity fo r  tow-densi ty  polyethylene [3]: 
1) t rue curve;  2) approximat ion  used in solving the rmal  
problem (~, W / m .  deg; a , m 2 / s e c ,  t, ~ 

and we substi tute (2) into (1) and in tegra te  twice with the following boundary conditions 

dVoy y=0 = O, V Iv=vo{,,x) = O, (4) 

and introduce the mean-f low speed 

to get the express ion  

Yo (t ,x) 

dA= 1 f v(y,t)@, V =  d/ Ya 
0 

(s) 

Yo (t,x) 
dl ( d P l ' *  1 
d--[ = \ dx ] Yo (t, x) v yn+l [U (T)I- ldY.  (6) 

0 

Then we have to der ive  y0(t, x) and T(y, x, t) f r o m  the energy  equations for  the region of solidified 
polymer  and the liquid core.  

The following assumpt ions  a r e  made  in solving the the rma l  par t  of the problem.  The the rma l  dif-  
fus ivi ty  ~ of the mel t  is equal to that of the solidified ma te r i a l  and is independent of t e m p e r a t u r e  (curve 2 
of Fig. lb) ,  and ~he c rys ta l l i za t ion  reg ion  is localized a t  t e m p e r a t u r e  T , ,  where  a(T) shows a d iscon-  
tinuity, and there  is an in ter face  between the phases ,  which a r i s e s  because  there  is a definite talent heat 
of fusion r. We a lso  a s s u m e  that the t he rma l  conductivity X of the mel t  is equal to that of the solidified 
polymer.  

We neglect  d iss ipat ive  heat production in the liquid core.  

The t e m p e r a t u r e  gradient  in the x di rect ion is much less  than that in the y direct ion,  since equal 
finite t e m p e r a t u r e  d i f ferences  T o - T .  a r e  attained in the f i r s t  case  in lengths that a r e  l a rge r  by 1-2 o rde r s  
of magnitude than those in the second, so we a s s u m e  that 

OT1/Ox = O. (7) 

A consequence of assumpt ion  (7) is  that there  is no convective heat t r a n s f e r  in a liquid core ,  and 
hence that T1, T2, Y0, and aP /0x  a r e  independent of x; the la t ter  in (6) may  then be replaced  by 

(T ,  - -  Tw) ">~ (To - -  T,) ,  

The differentia[  equations for  t he rm a l  conduction then take the following form:  

OTI__ = ~ 02T1-', 0 < y <Yo (t), (8) 
Ot Oy ~ 

OTo. = a-O~T2 ; Yo (t) <5 y < h (9) 
Ot Oy 2 

with the following boundary and initial  conditions: 
OT11 ,lu=o= 0, T z ly=uor = T , ,  T1 It=o =To, (10) 
09 

T2 ly=h = T , ,  T2]y=v . l t )  = T. ,  T~[t=o = To. (il) 
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F ig .  2 

F ig .  2. F i l l i n g  of a mold  by  a c r y s t a l l i n e  p o l y m e r .  

2 4 t 
F ig .  3 

F ig .  3. Mold fiLLing length  a s  a func t ion  of t i m e  fo r  v a r i o u s  t e m p e r a t u r e s ;  c o m p o -  
nent  t h i c k n e s s  2 mm.  P r e s s u r e  a t  ou t le t  to mold  600 k g / c m  2 (/, mm;  t,  sec) .  T e m -  
p e r a t u r e s  (~ a) 180; b) 190; c) 200; d) 210; e) 230; f) 250; 1) c a l c u l a t e d  c u r v e ;  2) 
e x p e r i m e n t .  The  R o m a n  n u m e r a l s  a r e  the  n u m b e r s  of the t r a n s d u c e r s  p laced  a long  
the c a v i t y  (350 m m  f r o m  in l e t  to end). The n u m b e r s  on the c u r v e s  a r e  the  s p e c i m e n  
l eng ths  in  ram.  

The  i n t e r f a c e  has  c o o r d i n a t e  y0(t), w h e r e  the hea t  f lux to the wa l t  i s  equal  to the  s u m  of the f lux p r o -  
duced  by  c r y s t a l l i z a t i o n  and the f lux  d r a w n  f r o m  the l iquid c o r e ,  but  the  l a t t e r  can  be n e g l e c t e d  by  v i r t u e  
of  the cond i t ion  ( T , - T w )  >>(T0-T*) ;  the f inal  cond i t i on  a t  the i n t e r f a c e  t a k e s  the f o r m :  

~, ~)T~ = rp dY~ (12) 
ay ly=yo(o dt ' 

w h e r e  ~ and p a r e  the t h e r m a l  conduc t i v i t y  and d e n s i t y  of the p o l y m e r  r e s p e c t i v e l y .  

The Y0 (t) r e l a t i o n s h i p  i s  d e t e r m i n e d  by  so lu t ion  of (9) and (12) t o g e t h e r ;  we i n t roduce  the new v a r i a b l e  

h - - y  
z = 2 V' t - '  (13) 

which has  the r a n g e  of v a r i a t i o n  

w h e r e u p o n  (9) and (12) t ake  the f o r m  

0 ly=n ~-~ z ~ z 0 ly=yo(i) , (14) 

d2To -- 2Z dT2 = r 

dz dz ~ , (15) 

dT~ z=zo 2rp = - -  z o . (16) 
dz ~, 

The so lu t i on  to (15) s u b j e c t  to the b o u n d a r y  c ond i t i ons  c o r r e s p o n d i n g  to (11) t a k e s  the f o r m  

T~ - -  T~  r (z/,," c~ ) 

T ,  - -  T~r r (zol/ a ) 
(17) 
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where  r is the e r r o r  in tegra l ,  

zlV'5"- 2[ ( z21d z (18) (z) -- V~-~ exp 
. \ cz] 
0 

We get the fol lowing equat ion equat ion by subs t i tu t ing  into (17) for  dT2/dz at  z = z 0 and subst i tu t ion into 
(16): 

exp (-- Z2o/a) arp 
z0r (zo/V' a)) = 2 IJ--a L (T , - -Tw)  ' (19) 

f r o m  which we de t e rmine  z 0` Then in ca lcu la t ing  z0, we use  (13) to der ive  Y0 (t). 

The re l a t ionsh ip  T t (y, t)  is d e t e r m i n e d  by solving (8); we in tegra te  the l a t t e r  with r e s p e c t  to y f r o m  
0 to Y0 subject  to 3T1/3yTy = 0 = 0 and get  

V* ~ (gTz a 0Tx ~/- dy = ~-y ,.(,. (20) 
0 

and the solut ion to (20) we seek in the f o r m  

T t = T , - q D ( t ) [  1 - - - -  
yg 

y~(t) ]" (21) 

Then (21) sa t i s f i e s  the condi t ions  

07'1 =0;  Tz[v=v.(~) = T , .  
Oy v=o 

The condit ion T1] t =0 = To is me t  only at  y = 0 for  

q~(t) I~=o = T o - -  T . ,  (22) 

which  is cons ide red  suff ic ient  in solving the p resen t  p rob lem.  

We subs t i tu te  (21) into (20) and in tegra te  to get  

Yoq )' -F q)Yo + 3cr ~ = 0 

o r  

(~Yo)' + 3~Y~ 2 (,Yo) = O. (23) 

In tegra t ion  of (23) g ives  

t 

j v~j' 
0 

where  the cons tan t  of in t eg ra t ion  is defined f r o m  the condi t ion Y0(t) l t = 0 = h, s ee  (13) and (22): 

(24) 

C = (T O - -  T,) h. (25) 

Then f inal ly  we get  fo r  (p(t) by subs t i tu t ion  into (24) of va lues  for  y0(t) and T followed by in tegra t ion:  

_ [ _  3~ 2zoV7,,'~ 1. (26) 

446 



Then Tl(y , t) is as  follows on substi tuting (26) into (21): 

T1-- T, (27) 
T o -- T, 

where  a : 2 z 0 4 t / h ;  n : 3 a / 2 z  2. 

We subst i tute  for  y0(t) and Tt(y , t) in (6) and rep lace  the der iva t ive  0P /~x  by P0//(t) ,  and then in-  
t roduce the d imens ion less  va r i ab le  Y/Y0 = ~ and in tegra te  with r e spec t  to t to get 

f 1 ' •  ) 
- - =  1.-- (1--a2)h2 ] ( 1 - - ~ ) - ( •  ~ , 

l(t)~+~=(n+l)P'~h~+32~~ i [ b  
~1o - �9 ~ j (1--  a)~+ld~ ~+~exp To--T, 

0 0 

• exp [• - -  ~)] (1 - -  cz) ~+! ] d~ 
(1 - -~)  (2s) 

which enables us to follow the fil l ing of the mold. If we substi tute into the upper  l imit  in the outer in tegra l  
in (28) the t ime  cor responding  to the end of the filling (condition Y0 = 0), which is deduced f r o m  (13), we 
get the express ion  for the maximal  cas t  length as 

1 I 

~lo2Z~ [~ (1 - -  ~r exp - -  (T O - -  T,)(I - -  ~2) �9 
0 0 

Equation (29) r e l a t e s  the m a x i m u m  possible  length of the cast ing to the rheological  quanti t ies %, T , ,  
n, b and the the rmophys ica l  ones ~, r ,  and a ,  as well  as to the technological  p a r a m e t e r s  P0 and T o and 
the mold geome t ry  h; it enables one to e s t ima te  the scope for making such components  not only in designing 
molds  but a l so  in de termining  technological  working conditions for  exist ing equipment. 

Equations (28) and (29) have been checked by cast ing polypropylene of g rade  PP-2  under p re s su re .  

The mold in the cast ing machine was a plate 20 • 350 m m  of var iab le  th icknesses :  1, 1.5, 2, and 4 
mm.  Detec tors  of s t r a in -gauge  type were  placed at var ious  points along the length of the mold to r ecord  
the instant  when the front  passed a given point (see [4] for  the method of measur ing  the p r e s s u r e  and filling 
t ime).  The signals  f r o m  the de tec tors  were  recorded  by an osci l loscope during filling and thus gave l (t) 
for  var ious  va lues  of P0, To, and h. The final cas t  lengths L were  measu red  to 1 mm.  To der ive  l(t) and L 
to cor respond  with exper imenta l  values  we used (28) and (29) to de te rmine  T ,  by a the rmomechan ica l  me th -  
od, while the the rmophys ica l  cha r ac t e r i s t i c s  a and r were  de termined in the s teady the rma l  s tate,  and the 
theologica l  constants  n, %, T , ,  and b were  de te rmined  by capi l la ry  v i scomet ry .  The computat ions f r o m  
(28) and (29) were  pe r fo rmed  with a BESM-4 computer .  

F igure  3 com pa re s  the calculated and observed l(t) and L, and the d i sc repanc ies  in l(t) a r e  
cons iderable  (up to 25%) only during the initial s tage of filling, which has l i t t le influence on the 
d i sc repancy  between the calculated and observed L (maximum cast  length 350 mm),  the e r r o r  in the la t ter  
case  not exceeding 5%. 
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